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Transition to synchronization in a Kuramoto model with the first- and second-order
interaction terms
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We investigate a Kuramoto model incorporated with the first-order and the second-order interaction terms. We
show that the model displays the coexistence of multiattractors and different attractors may be characterized by
the phase distributions of oscillators. By investigating the transition diagrams in both forward continuation and
backward continuation, we find that the synchronous state with unimodal phase distribution is the most stable
one while the state in cluster synchrony with evenly distributed bimodal phase distribution is the least stable one.
We also present the phase diagram of the model in the parameter space.
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I. INTRODUCTION

Synchronization, a phenomenon since the early days in
physics, is found in systems such as fireflies flashing in unison
[1,2], Josephson junction arrays [3], atomic recoil lasers [4],
electrochemical oscillators [5], applauding persons in a large
audience [6], pedestrians on footbridges [7], and many others.
The Kuramoto model (KM) has become a paradigmatic model
in the study of synchronization since it is proposed by
Kuramoto in 1975 [8],

The original KM consists of N phase oscillators. Each
oscillator has its own natural frequency ω drawn from a
given probability density g(ω) and interacts with the mean
field with a global coupling strength K . Synchronization is
observed when the coupling strength K is above a threshold
Kc and the synchronization transition is a continuous one [9].
Several generalizations to the original KM have been made.
In an original KM, the coupling strength K is assumed to
be positive to account for an attractive interaction. Tsimring
et al. considered the case in which the interaction between
oscillators and the mean field is a repulsive one (K < 0)
and they found that synchronization fails for an array of
nonidentical phase oscillators provided that the number of
oscillators is sufficiently large [10]. Hong and Strogatz studied
the situation in which the coupling strength is treated as
an oscillator’s ability reacting to the mean field individually
[11,12]. In their works, both positive and negative coupling
strengths are present in the population. They found a novel
travelling wave state when incoherence state becomes unsta-
ble. With the well recognition of complex networks in natural
and social systems in the past decade, the requirement of
global interaction among oscillators has been discarded and
phase oscillators are assumed to sit on nodes on networks
and to interact only with their neighbors. Some interesting
findings have been made such as the explosive synchronization
when the natural frequencies of oscillators are positively
correlated to the numbers of neighbors of oscillators [13,14]
and dependence of transition scenarios on the topological
properties of networks.
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Kuramoto showed [9] that the interaction between phase
oscillators should take the general form of H (θi − θj ), where
θi and θj are the phases of oscillators i and j and H is a
2π -periodic function. However, most of works on KM only
involve with the interaction taking the form sin(θi − θj ), which
is the first order of H in a Fourier expansion. Recently,
Engelbrecht and Mirollo showed [15] that the long-term
average frequency as a natural frequency displays a devil
staircase when an additional second-order interaction term is
introduced to the original KM. Tanaka and Aoyagi studied the
KM model with the addition of three-body interaction which
actually leads to a second-order interaction term [16]. They
found the coexistsence of multiattractors. Using a variation
of recent dimensionality-reduction technique of Ott and
Antonsen [17], Skardal et al. studied coupled phase oscillators
with a single higher-order coupling [18] and characterized
the cluster synchrony in the system. In a nonlocally KM,
Battogtokh found that phase turbulence persists across a wide
interval of coupling ranges if both the first and the second
coupling terms are taken into consideration while it exists only
at long coupling range if only the first-order coupling is present
[19]. In this work, we will investigate the synchronization
transition in the KM with both the first- and the second-order
interaction terms.

II. MODEL

The model is described as

θ̇i = ωi + K1

N

N∑

j=1

sin(θj − θi)

+ K2

N

N∑

j=1

sin[2(θj − θi)], i = 1,2 . . . N, (1)

where θi(t) is the phase of the ith oscillator at time t and N

is the number of phase oscillators in the system. ωi is the
natural frequency of the ith oscillator and is chosen at random
from a Lorentzian probability density g(ω) = γ /[π (γ 2 + ω2)]
of width γ = 0.5. K1 and K2 are the coupling strengthes for
the interactions through the first-order and the second-order
interaction terms.
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We define two order parameters

Zk = Rke
ik�k = 1

N

N∑

j=1

eikθj , k = 1,2. (2)

Then, by introducing φi = θi − �1, Eq. (1) can be rewritten
in terms of these order parameters

φ̇i = ωi − �1 − K1R1 sin(φi)

−K2R2 sin[2(φi − 	�)], i = 1,2 . . . N, (3)

where 	� = �2 − �1 and �1 = d�1/dt is the mean-field
frequency. In the case with K1 = 0 (or K2 = 0), the model is
reduced to the original KM and the incoherent state becomes
unstable above Ki = 1(i = 1,2).

In model (1), the extent of the synchronization is better
reflected by the order parameter Z2. However, as shown in the
following, though the order parameter Z1 is not responsible for
the onset of synchronization, it is still an important measure
reflecting the organization of oscillators in a microscopic view.

For a general case with nonzero K1 and nonzero K2,
the dynamics in model (1) strongly depends on the initial
conditions. To get a clear picture on it, we assume that partial
synchronization has been built up and oscillators with natural
frequency ω could be synchronized. Then the phase φ∗ of the
synchronized oscillators satisfies

ω

K1R1
= sin(φ∗) + K2R2

K1R1
sin[2(φ∗ − 	�)]. (4)

The function on the right-hand side of Eq. (4) is dependent
of K2R2/K1R1 and 	�. Figure 1(a) shows the results at
	� = 0. For K2R2/K1R1 > 0.5, there may exist four φ∗ to
satisfy Eq. (4) provided that ω is sufficiently close to ω = 0:
two stable equilibria and two unstable equilibria. The distance

FIG. 1. (Color online) The function on the right-hand side of
Eq. (4) is plotted against φ for different K2R2/K1R1 and different
	�. (a) 	� = 0; (b) K2R2/K1R1 = 0.2; (c) K2R2/K1R1 = 0.5;
(d) K2R2/K1R1 = 1. The black horizontal line indicates a possible
ω/K1R1 which may intersect with the function once or twice.

between two stable (or unstable) equilibria is around π . On the
other hand, only two φ∗ can be found for K2R2/K1R1 < 0.5
and only one of them is stable. When K2R2/K1R1 > 0.5, the
existence of two stable φ∗ for the oscillator with a proper
natural frequency indicates that which φ∗ is taken by the
oscillator in the evolution depends on its initial condition
and on the history of the system. Consequently, for arbitrary
initial conditions, the model may develop into states in cluster
synchrony where oscillators are divided into two groups which
are separated from each other with a distance around π along
the space of φ. Figures 1(b)–1(d) show that the function
at several 	� for different K2R2/K1R1. The number of
solutions to Eq. (4) is unchanged for both low and high
K2R2/K1R1. However, the situation will become complicated
at K2R2/K1R1 � 0.5, where the number of φ∗ strongly
depends on 	�. Fortunately, in the numerical investigations
of model (1), we always find 	� � 0 and, consequently,
K2R2/K1R1 will be the only quantity that matters.

III. NUMERICAL RESULTS

We numerically investigate the dynamics in model (1) by a
fourth-order Runge-Kutta algorithm with a time step δt = 0.01
and, throughout the work, we let N = 10 000.

First, we investigate the effects of the initial conditions
on the dynamics of the system. To do it, we initially assign
each oscillator a phase randomly drawn from the distribution
pδ(θ ) + (1 − p)δ(θ − π ). p denotes the fraction of oscillators
adopting θ = 0 as their initial phases. Due to the symmetry, we
only consider p in the range of p ∈ [0,0.5]. In the case with
K1 = 0, the initial conditions with p = 0 always develops into
a phase distribution with a single peak and those with p = 0.5
will always evolve to a state in cluster synchrony with two
peaks with the same height. However, for nonzero K1 and
K2, the final phase distribution is dependent on not only p

but also on K1 and K2. Note that we also simulate the model
by initializing the phase oscillators with two smooth peak
distributions with a nonzero width, such as two Gaussians or
two Lorentzians, and we find that simulation results are similar
to those using two δ functions.

Figure 2(a) shows the results for K1 = 0.8 and K2 = 0.6.
The amplitude of the order parameters R1 and R2 are plotted
against p. From the data, we know that K2R2/K1R1 � 0.5
no matter what p is, which is a marginal case between single
stable φ∗ and two stable φ∗. As a result, the phase distribution
always looks like a single-peak one, which suggests that
R1 is always higher than R2 and that both R1 and R2 are
insensitive to p. Then we increase K2. Figure 2(b) shows the
case for K1 = 0.8 and K2 = 1. In this case, both R1 and R2

show strong dependence on p. The feature can be understood
by noticing that K2R2/K1R1 is always higher than 1. For
K2R2/K1R1 much high than 0.5, the phase distribution with
two peaks becomes possible with a proper preparation of initial
conditions. As shown by the insets, the phase distribution is
changed from a structure with a single peak to a one with
two peaks as p increases and the the structure with two peaks
becomes more prominent when p increases toward 0.5. For
larger K2R2/K1R1, for example, in Fig. 2(c) where K2 = 1.2,
we may find that the phase distribution could reach one having
two peaks with the same height. For a state in cluster synchrony
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FIG. 2. (Color online) The amplitudes of order parameters R1

(red square), R2 (black circle), and the quantity R2K2/R1K1 (blue
triangle) are plotted against p for different K2 at K1 = 0.8. (a) K2 =
0.6, (b) K2 = 1, and (c) K2 = 1.2. Insets show the phase distributions
of oscillators in steady states at different K2 denoted by arrows.

where the phase distribution with two similar peaks has been
built up, R1 approaches zero since the two stable φ∗ are
separated from each other at around π .

The results in Fig. 2 suggest the coexistence of an infinite
number of states in cluster synchrony which are characterized
by their different phase distributions. Now two questions arise:
How stable are these states with different phase distributions?
How do these states depend on the parameters K1 and K2?
To answer the first question, we investigate how a given
state in cluster synchrony responses to perturbation. We first
prepare a state in cluster synchrony at certain K1, K2, and p.
Then we perturb the state at a certain time. The perturbation
applying to the phase of every oscillator takes the form of θ →
θ + ξ , where ξ is a random number uniformly distributing
in the range of (0,α). The response of the given state to
perturbation is measured by 	R1 and 	R2, the difference
between the amplitudes of order parameters before and after
the perturbation. Figure 3 presents 	R1 and 	R2 against
α for different combinations of K1, K2, and p where each
datum is acquired by averaging over 10 different realizations
of ξ . Interestingly, there exists a threshold on the strength of
perturbation for each set of parameters. Below the threshold,
	R1 and 	R2 stay at constants, which suggests that the state
is linearly stable (nonzero 	R1 and 	R2 could be caused by a
finite number of oscillators, such as larger N and lower 	R1

and 	R2). In contrast, 	R1 and 	R2 strongly depend on the
strength of perturbation when α is higher than the threshold,
which indicates that perturbation brings the model into other
different states. Though the critical strength of perturbation
is always low and distinguishing different states in cluster
synchrony only by the order parameters is not sufficient, the
existence of a threshold on the strength of perturbation in
Fig. 3 suggests that the observed states in cluster synchrony
are asymptotically stable but with much narrower attraction
basins.

FIG. 3. (Color online) The responses 	R1 (black square) and
	R2 (red circle) of states in cluster synchrony to different
strength α of perturbation. (a) K1 = 0.75, K1 = 0.75, and p = 0.1;
(b) K1 = 0.75, K1 = 0.75, and p = 0.3; (c) K1 = 0.6, K1 = 1.2, and
p = 0.1; (d) K1 = 0.6, K1 = 1.2, and p = 0.3.

To investigate how the states in cluster synchrony depend on
the parameters K1 and K2, we consider two types of transition
diagrams, labeled as forward continuation and backward con-
tinuation. The coupling strength are successively increased (or
decreased) by a δλ in the forward (or backward) continuation
and the initial conditions for one coupling strength are the
final state of the previous one. Both the forward continuation
and the backward continuation start with the initial conditions
with p = 0.5. In Fig. 4, we show the amplitudes of the
order parameters R1 and R2 against K2 for different K1.

FIG. 4. (Color online) The amplitudes of order parameters R1

(black square) and R2 (red circle) are plotted against K2 at different
K1. (a) K1 = 0.2, (b) K1 = 0.4, and (c) K1 = 0.85. The transition
diagram in the forward continuation (or the backward continuation)
is denoted by open symbols (or solid symbols).
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FIG. 5. (Color online) The phase distributions in steady states
for different K2 at (a) K1 = 0.2, (b) K1 = 0.4, and (c) K1 = 0.85
in the forward continuation (in open symbols) and the backward
continuation (in solid symbols).

The transition scenarios in these two types of continuations
differ substantially. For the forward continuation, the transition
scenario seems to be continuous except for the situation with
high K1 in which the transition between the incoherent state
and a partially synchronized state is a sharp one. In contrast,
the transition scenario in the backward continuation is always
discontinuous. In the parameter range we investigated, there
may exist several regimes. From one regime to another, R1

and R2 show large jumps. The number of regimes strongly
depends on the coupling strength K1. For example, there are
no jumps on the curves of R1 and R2 as functions of K2 at
K1 = 0.2. As shown in Fig. 4(a), R1 stays at zero and R2

reduces to zero gradually until K2 = 1. However, in Fig. 4(b),
where K1 = 0.4, and Fig. 4(c), where K1 = 0.85, we find the
jumps on the curves of both R2 and R1 with the change of
K2. To be noted, as shown in Fig. 4, the deviation of R1 from
R1 = 0 means more than the transition between the incoherent
state and a partially synchronized state—it could signify the
instability of states in cluster synchrony with evenly distributed
phase distributions.

The transition scenarios shown in Fig. 4 can be understood
by the variation in the phase distributions of oscillators.
Figure 5(a) shows the phase distributions at K1 = 0.2 for
different K2 in both the forward continuation and the backward
continuation. Clearly, in the presence of synchronization, the
qualitative properties of the phase distributions are unchanged
in both the forward continuation and the backward contin-
uation when K2 varies: the phase distributions are always
unimodal in the forward continuation while those in the
backward continuation are always evenly distributed bimodal
one. On the contrary, things differ substantially in the backward
continuation at K1 = 0.4 and K1 = 0.85 though the phase
distributions in the forward continuation are still the unimodal
ones. As shown in Figs. 5(b) and 5(c), the phase distributions

FIG. 6. (Color online) The time evolutions of phase distribution
for different K2 at K1 = 0.4. The initial phase distribution is an
evenly distributed bimodal phase distribution. The top panels show
the evolution in a long time run and the bottom panels show the
transient in a short time interval. (a) K2 = 1.07; (b) K2 = 0.97;
(c) K2 = 0.8.

manifest themselves as the evenly distributed bimodal ones
for large K2. However, with the decrease of K2, we find that
the evenly distributed bimodal phase distributions are replaced
by unevenly distributed bimodal ones. More lower K2, more
uneven the phase distribution. Moreover, when the transitions
between the incoherent state and the partially synchronized
states are approached, the bimodal phase distributions transit
to unimodal ones. For example, the phase distributions at
K2 = 0.8 in Fig. 4(b) and at k2 = 0.5 in Fig. 4(c) are the
unimodal ones.

The results in Figs. 4 and 5 can be summarized as following.
Partially synchronized states are characterized by their phase
distributions and the stabilities of states in cluster synchrony
are strongly dependent on their phase distributions. The states
with evenly distributed bimodal phase distributions are the
least stable ones which become unstable first in the backward
continuation. The states with unimodal phase distributions are
the most stable ones, which can also be reflected by the fact that
the states are the ones developed directly from the incoherent
state in the forward continuation. The states with unevenly
distributed bimodal phase distributions are the intermediate
ones. Generally, the more uneven their phase distributions the
more stable they are.

To get more intuitions on the transitions in the backward
continuation, we investigate how the phase distributions of
oscillators evolve with time. We first prepare an evenly
distributed bimodal phase distribution which is evolved from
the initial condition with p = 0.5 at K1 = 0.4 and K2 = 1.2.
Then the prepared state is used as the initial condition for
different K2 at K1 = 0.4. In Fig. 6(a) where K2 = 1.07, the
final phase distribution is an unevenly distributed bimodal
one and the final distribution is developed from the initial
evenly distributed bimodal one continuously. On the other
hand, Fig. 6(b) shows that, at K2 = 0.97, the final unevenly
distributed bimodal phase distribution cannot be developed
from the initial evenly distributed one directly. The initial
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FIG. 7. (Color online) The phase diagram of model (1) on the
space of K1 and K2. The curve C1 (black solid square) denotes the
boundary between the incoherent state and partially synchronized
states. Below the curve, no synchronous state exists. The curve C2

(black solid circle) denotes the boundary between the multiattractors
and single attractor. The regimes enclosed by the curves C1 and
C3 denotes the coexistence between the incoherent state and the
synchronous states. Below the curve C4 the synchronous states with
evenly distributed phase distribution are unstable. The curves with
open symbols denote the discontinuous transition in the backward
continuations for different initial phase distributions with p = 0.1
(black open square), p = 0.2 (red open circle), p = 0.4 (green open
up-triangle), and p = 0.45 (blue open down-triangle).

bimodal distribution first evolves into a seemly incoherent
transient state [see the bottom panel in Fig. 6(b)] and then the
final distribution grows up out of the incoherent transient.
For lower K2 such as K2 = 0.8, Fig. 6(c) shows that the
building up of a unimodal phase distribution also undergoes
a transient period of irregular dynamics. Whether the phase
distribution for a state in cluster synchrony can be developed
directly from the one of another state determines whether the
transition between them is a continuous one, which accounts
for the discontinuities exited in the transition scenario for some
combinations of K1 and K2 in Fig. 4. To be mentioned, whether
a state in cluster synchrony can be developed directly from
another one is possibly determined by the difference between
their phase distributions, which serves as a perturbation. When
the perturbation is strong, the transient incoherence seems
likely. However, more thorough investigations are required to
reach a convincing conclusion, which is beyond the scope of
this work.

To get an overview on the dynamics in model (1), we present
the phase diagram of model (1) on the plane of K1 and K2 in
Fig. 7. There are four curves dividing the plane of K1 and K2

into several regimes. Below the curve C1, only incoherent
states can be found. Below the curve C2, the coexistence
of infinite number of states in cluster synchrony is lost and
only one synchronous state with unimodal phase distribution
exists. The incoherent state coexists with synchronous state
in the regime enclosed by the curves C1 and C3. The
curve C4 is acquired by the transition between the states
in cluster synchrony with R1 = 0 and with R1 �= 0, below
which the states with evenly distributed phase distribution
become unstable. We also present in Fig. 7 other four curves
which are labeled by different p. These curves locate the first
discontinuous transition in the backward continuations for both

K2 and K1 when the initial conditions are characterized by p.
Clearly, on the right side of all of these curves, a state developed
from arbitrary initial condition can continuously approach the
incoherent state by decreasing K1 and K2 along proper chosen
pathes.

Tsimring et al. considered an variant of the original KM in
which the interaction between oscillators and the mean field is
a repulsive one [10]. They found that synchronization fails for
a population of nonidentical phase oscillators provided that the
number of oscillators is sufficiently large. Here, we present the
results for the model with negative K1 or negative K2 in Fig. 7.
Interestingly, we find that the incoherent state always becomes
unstable at K2 � 1 (or K1 � 1) for negative K1 (or negative
K2). The finding indicates that only the coupling term with
positive coupling strength is relevant to the instability of the
incoherent state. A possible explanation is that the coupling
term with negative coupling strength just act as a noise which
can impacts on the coherent state in the model only when they
are strong enough.

IV. DISCUSSIONS

In a recently published elegant work [20], Komarov and
Pikovsky also studied model (1). They provided the solutions
for stationary synchronous states based on self-consistency
equations and the diagram of different states in the plane
of K1 and K2. In their work, the synchronous states are
characterized by a parameter σ describing the distribution
of oscillators’ phases over different branches (or different
stable φ∗ as discussed in Sec. II) and σ is assumed to be
independent of the natural frequencies ω of oscillators. Though
the synchronous states in model (1) cannot be determined only
by a parameter σ and σ should be dependent of ω, their results
still shed great insight on the dynamics in model (1).

Though the model we studied in this work is the same
as the one used by Komarov and Pikovsky, we investigated
it in a different way and drew some conclusions they did not
discuss and even ones that differed from theirs. First, Komarov
and Pikovsky claimed in their work that the states in cluster
synchrony in the parameter region beyond L2 (see Fig. 2 in
their work) are linearly neutrally stable. However, in our work,
those states in cluster synchrony are asymptotically stable
though with a much narrower attraction basin (see Fig. 3).
Second, Komarov and Pikovsky presented the parameter
regimes for different states in cluster synchrony using a
self-consistence approach. However, they did not pay much
attention to the transition scenario. In our work, we discussed
the transition scenario and found that the scenario strongly
depends on the parameter. Notably, we found that the transition
from one synchronous state to another with the change of
the parameter could be discontinuous or continuous. We also
presented a possible explanation for it. Third, Komarov and
Pikovsky characterized the different states in cluster synchrony
by a parameter σ assumed to be independent of the natural
frequency of oscillators. However, whether such an assumption
holds for arbitrary initial conditions is questionable. In our
work, we characterized the states by the asymmetry in their
final phase distributions. We found that the states in cluster
synchrony with evenly distributed bimodal phase distribution
are the least stable ones, which is not found by Komarov and
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Pikovsky (σ = 0.5 amounts to the state with evenly distributed
bimodal phase distribution in their work). Last, we explored a
larger parameter regime in the plane of K1 and k2. We found
that the onset of synchronization is the same as the model with
only the first-order or the second-order interaction term if one
of K1 and K2 is negative. In summary, we think that the results

in our work could be complementary to the work by Komarov
and Pikovsky.
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R. Jaimes-Reátegui, and S. Boccaletti, Phys. Rev. Lett. 108,
168702 (2012).

[15] J. R. Engelbrecht and R. Mirollo, Phys. Rev. Lett. 109, 034103
(2012).

[16] T. Tanaka and T. Aoyagi, Phys. Rev. Lett. 106, 224101 (2011).
[17] E. Ott and T. M. Antonsen, Chaos 18, 037113 (2008).
[18] P. S. Skardal, E. Ott, and J. G. Restrepo, Phys. Rev. E 84, 036208

(2011).
[19] D. Battogtokh, Phys. Lett. A 299, 558 (2002).
[20] M. Komarov and A. Pikovsky, Phys. Rev. Lett. 111, 204101

(2013).

032917-6

http://dx.doi.org/10.1038/scientificamerican0576-74
http://dx.doi.org/10.1038/scientificamerican0576-74
http://dx.doi.org/10.1038/scientificamerican0576-74
http://dx.doi.org/10.1038/scientificamerican0576-74
http://dx.doi.org/10.1086/415929
http://dx.doi.org/10.1086/415929
http://dx.doi.org/10.1086/415929
http://dx.doi.org/10.1086/415929
http://dx.doi.org/10.1016/0167-2789(92)90057-T
http://dx.doi.org/10.1016/0167-2789(92)90057-T
http://dx.doi.org/10.1016/0167-2789(92)90057-T
http://dx.doi.org/10.1016/0167-2789(92)90057-T
http://dx.doi.org/10.1103/PhysRevLett.76.404
http://dx.doi.org/10.1103/PhysRevLett.76.404
http://dx.doi.org/10.1103/PhysRevLett.76.404
http://dx.doi.org/10.1103/PhysRevLett.76.404
http://dx.doi.org/10.1103/PhysRevE.57.1563
http://dx.doi.org/10.1103/PhysRevE.57.1563
http://dx.doi.org/10.1103/PhysRevE.57.1563
http://dx.doi.org/10.1103/PhysRevE.57.1563
http://dx.doi.org/10.1103/PhysRevE.78.011108
http://dx.doi.org/10.1103/PhysRevE.78.011108
http://dx.doi.org/10.1103/PhysRevE.78.011108
http://dx.doi.org/10.1103/PhysRevE.78.011108
http://dx.doi.org/10.1063/1.1426382
http://dx.doi.org/10.1063/1.1426382
http://dx.doi.org/10.1063/1.1426382
http://dx.doi.org/10.1063/1.1426382
http://dx.doi.org/10.1103/PhysRevE.83.016210
http://dx.doi.org/10.1103/PhysRevE.83.016210
http://dx.doi.org/10.1103/PhysRevE.83.016210
http://dx.doi.org/10.1103/PhysRevE.83.016210
http://dx.doi.org/10.1103/PhysRevE.61.6987
http://dx.doi.org/10.1103/PhysRevE.61.6987
http://dx.doi.org/10.1103/PhysRevE.61.6987
http://dx.doi.org/10.1103/PhysRevE.61.6987
http://dx.doi.org/10.1103/PhysRevE.75.021110
http://dx.doi.org/10.1103/PhysRevE.75.021110
http://dx.doi.org/10.1103/PhysRevE.75.021110
http://dx.doi.org/10.1103/PhysRevE.75.021110
http://dx.doi.org/10.1103/PhysRevLett.95.014101
http://dx.doi.org/10.1103/PhysRevLett.95.014101
http://dx.doi.org/10.1103/PhysRevLett.95.014101
http://dx.doi.org/10.1103/PhysRevLett.95.014101
http://dx.doi.org/10.1103/PhysRevLett.106.054102
http://dx.doi.org/10.1103/PhysRevLett.106.054102
http://dx.doi.org/10.1103/PhysRevLett.106.054102
http://dx.doi.org/10.1103/PhysRevLett.106.054102
http://dx.doi.org/10.1103/PhysRevE.84.046202
http://dx.doi.org/10.1103/PhysRevE.84.046202
http://dx.doi.org/10.1103/PhysRevE.84.046202
http://dx.doi.org/10.1103/PhysRevE.84.046202
http://dx.doi.org/10.1103/PhysRevLett.106.128701
http://dx.doi.org/10.1103/PhysRevLett.106.128701
http://dx.doi.org/10.1103/PhysRevLett.106.128701
http://dx.doi.org/10.1103/PhysRevLett.106.128701
http://dx.doi.org/10.1103/PhysRevLett.108.168702
http://dx.doi.org/10.1103/PhysRevLett.108.168702
http://dx.doi.org/10.1103/PhysRevLett.108.168702
http://dx.doi.org/10.1103/PhysRevLett.108.168702
http://dx.doi.org/10.1103/PhysRevLett.109.034103
http://dx.doi.org/10.1103/PhysRevLett.109.034103
http://dx.doi.org/10.1103/PhysRevLett.109.034103
http://dx.doi.org/10.1103/PhysRevLett.109.034103
http://dx.doi.org/10.1103/PhysRevLett.106.224101
http://dx.doi.org/10.1103/PhysRevLett.106.224101
http://dx.doi.org/10.1103/PhysRevLett.106.224101
http://dx.doi.org/10.1103/PhysRevLett.106.224101
http://dx.doi.org/10.1063/1.2930766
http://dx.doi.org/10.1063/1.2930766
http://dx.doi.org/10.1063/1.2930766
http://dx.doi.org/10.1063/1.2930766
http://dx.doi.org/10.1103/PhysRevE.84.036208
http://dx.doi.org/10.1103/PhysRevE.84.036208
http://dx.doi.org/10.1103/PhysRevE.84.036208
http://dx.doi.org/10.1103/PhysRevE.84.036208
http://dx.doi.org/10.1016/S0375-9601(02)00632-1
http://dx.doi.org/10.1016/S0375-9601(02)00632-1
http://dx.doi.org/10.1016/S0375-9601(02)00632-1
http://dx.doi.org/10.1016/S0375-9601(02)00632-1
http://dx.doi.org/10.1103/PhysRevLett.111.204101
http://dx.doi.org/10.1103/PhysRevLett.111.204101
http://dx.doi.org/10.1103/PhysRevLett.111.204101
http://dx.doi.org/10.1103/PhysRevLett.111.204101



