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The intensity distribution of light scattered by a capillary tube filled with a liquid is studied using
geometrical optics or ray tracing. Several intensity step points are found in the scattering pattern
due to contributions from different geometrical rays. The scattering angles of these intensity step points
vary with the capillary parameters, i.e., with the inner and outer radii of the capillary wall and the
refractive indices of the liquid and the wall material. The relations between the scattering angles of
the step points and the capillary parameters are analyzed using the reflection law and Snell’s law. A
method is developed to determine the capillary parameters from measurements of the scattering angles
of the step points. An experiment is designed to provide measured data from which the capillary
parameters can be obtained by the proposed method. It is shown that this method provides capillary
parameters of high precision. © 2012 Optical Society of America
OCIS codes: 120.0120, 120.5820, 290.0290, 290.3030.

1. Introduction

Two-dimensional scattering of light by concentric,
cylindrical structures is of great significance in quan-
tum mechanics, optics, and radio physics. Previous
researchers provided many approaches to analyze
the scattering of waves by cylinders, such as the
wave-equation-based Debye series expansion [1–3],
the semianalytical method using multipole expan-
sion techniques [4–7], the numerical moment method
[8,9], and the Green function-based Born approxi-
mation theory [10–12]. Scattering of light from a
capillary tube filled with a liquid is a typical situa-
tion of scattering by a concentric cylindrical struc-
ture. By analyzing the intensity distribution of the

scattered light, one can obtain the capillary para-
meters, including the refractive index of the liquid
[13–18]. Thus, by measuring the fringe spacing of
the scattered light, one can determine the outer
and inner radii of the capillary wall, and by compar-
ing the measured fringe pattern with that obtained
in simulations for different values of the refractive
index of the liquid, one can determine the latter as
the refractive index that provides the best agreement
between the measured and simulated fringe pat-
terns. Most of these methods are based on analyzing
interference patterns, and involve complicated calcu-
lations and a lot of data processing that must be
applied to the interference patterns obtained in
the experiment.

In this paper, geometrical optics or ray tracing is
used to analyze the intensity distribution of light
scattered by a capillary tube filled with a liquid.
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Thus, ray tracing is used to simulate the intensity
distribution of the scattered light. Several intensity
step points are found to be present in the scattering
pattern, and the positions of these step points vary
with the capillary parameters. A simple method is
developed to determine the capillary parameters,
including the refractive index of the liquid, from
measurements of the scattering angles of these step
points. To test the validity of this method, we con-
ducted an experiment, from which the refractive in-
dex obtained was found to deviate less than 0.5%
from that measured with an Abbe refractometer.
The range of capillary parameters to which themeth-
od can be applied is also discussed. Since the analysis
is based on geometrical ray theory, it has a straight-
forward physical interpretation.

The rest of the paper is organized as follows. In
Section 2, the intensity distribution of the scattered
light is analyzed using geometrical ray tracing, and
compared with that obtained experimentally. A
method to determine the capillary parameters is pre-
sented in Section 3. In Section 4, we present results
of an experiment to measure the scattered intensity
distribution, from which the capillary parameters,
including the liquid’s refractive index, can be ob-
tained. Finally, in Section 5, we draw our conclusions.

2. Analyzing the Intensity Distribution of the Scattered
Light Using Ray Tracing

Ray tracing can be used to calculate the paths of geo-
metrical rays by using the reflection law and Snell’s
law. By tracing the paths of geometrical rays that
emerge in a given observation direction and adding
their intensities, one can obtain the intensity of the
scattered light provided interference effects can be
neglected. While the path of a ray follows from re-
peated application of the reflection law and Snell’s
law [19] at the various interfaces it traverses, the in-
tensity of each ray follows from Fresnel’s equations,
which give the reflectance and transmittance at each
interface [20].

A. Analysis of Rays

The capillary wall is made of glass, and the
refractive-index difference between the wall and
air or between the wall and the liquid inside the tube
is assumed to be so small that it is enough to consider
at most one reflection either at the outer or at the
inner capillary wall. Thus, it suffices to consider
the seven different rays, denoted by ray number 1
through ray number 7 in Fig. 1.

Because of symmetry, it suffices to consider inci-
dent rays in the upper half of Fig. 1, where the angle
of incidence θ is defined as the angle between the in-
cident ray and the normal to the outer capillary wall.
The angle of deviation βk for ray number k is defined
as the angle from the direction of the incident ray to
the direction of the emergent ray number k with po-
sitive sign in the clockwise sense. Further, r and R
are the inner and outer radii, respectively, of the
capillary tube, and n and n0 are the refractive indices

of the liquid inside the tube and the capillary wall
material, respectively.

Using the reflection law and Snell’s law and
the geometry in Fig. 1, we find that the angles of
deviation βk (k � 1; 2;…; 7) are given by

β1 � 2θ − π
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Fig. 1. Ray paths of seven different rays.
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In Eqs. (3), (4) and (7), the maximum angle of inci-
dence arcsin�rn0∕R� is obtained only for the case
in which n > n0. When n < n0 and the angle of inci-
dence is larger than arcsin�rn∕R�, total internal re-
flection occurs at the interface between the capillary
wall and the liquid inside the tube, making ray num-
bers 3, 4, and 7 disappear; thus the maximum angle
of incidence is arcsin�rn∕R�. By taking into account
the reflectance and transmittance at each interface
of the capillary tube, one obtains the intensity
associated with each of the seven rays.

For different angles of incidence θ in Fig. 1 and
Eqs. (1)–(7), several among the seven rays may have
the same deviation angle, and the total intensity
then follows by adding the intensities of the contri-
buting rays. Since the coherence length of He–Ne
laser light is much larger than the difference in path
length between different contributing rays, interfer-
ence fringes will be present on the screen with a
fringe spacing of the order of λ∕Δβ, where λ � 0.633 ×
10−6 m is the light wavelength andΔβ � 0.013 rad is
the angular width subtended by the tube at the
screen. Thus, the fringe spacing is of the order of
0.005 cm, which is too small to be observed. Note that
our aim is not to determine the precise intensity
distribution of the scattered light, but rather the
scattering angles of the intensity step points. Thus,
geometrical optics can be used to explain the experi-
mental phenomena.

B. Intensity Distribution

Let the intensity of the incident light be I0�θ�, where
θ is the angle of incidence. Then the intensity of the
emerging light ray number k (k � 1; 2;…; 7) in the
direction βk is I�βk�, given by

I�βk� � S�θ; βk�I0�θ�; (8)

where the scattering factor S�θ; βk� is the product of
the reflectances and transmittances encountered by
ray number k at the various interfaces. As an exam-
ple, we consider S�θ; β2� for ray number 2. As indi-
cated in Fig. 1, ray number 2 undergoes refraction
at the outer capillary wall at an angle of incidence
θ and a corresponding angle of refraction θ0, reflection
at the inner capillary wall at an angle of incidence
θ2;1 and a corresponding angle of refraction θ02;1,
and another refraction at the outer capillary wall
at an angle of incidence θ2;2 and a corresponding an-
gle of refraction θ02;2. These angles follow by repeated
application of the reflection law and Snell’s law. The
scattering factor S�θ; β2� is given by the product [21]

S�θ; β2� � T�θ�R�θ2;1�T�θ2;2�
�

cos θ

jdβ2∕dθj

�
1∕2

; (9)

where the factor of �cos�θ�∕jdβ2∕dθj�1∕2 is due to the
angular divergence of the light, and T�θ�, R�θ2;1�,
and T�θ2;2� are, respectively, the transmittance
associated with the refraction from air at the outer
capillary wall, the reflectance associated with the

reflection at the inner capillary wall, and the trans-
mittance associated with the refraction into air at the
outer capillary wall. Let the incident ray be s polar-
ized, implying that its electric field points along the
cylinder axis. Then the reflectance R�γ� and trans-
mittance T�γ� are given by

R�γ� �
�
sin�γ − γ0�
sin�γ � γ0�

�
2
; (10)

T�γ� � 1 − R�γ�; (11)

where γ stands for θ, θ2;1, or θ2;2, and γ0 stands for θ0,
θ02;1, or θ02;2. The scattering factors for the other rays
can be obtained in a similar manner.

As mentioned above, for different angles of inci-
dence θ in Fig. 1 and Eqs. (1)–(7), several among the
seven rays may have the same deviation angle β, and
the total intensity then follows by adding the inten-
sities of the contributing rays, i.e.,

I�β� �
X7
i�1

S�θi; β�I0�θi�; (12)

where the angle of incidence θi for each of the seven
rays is chosen such that the seven rays have the
same deviation angle β. Note that for a certain num-
ber ray, different incident rays may correspond to a
same derivation angle; thus θi may not be unique,
and the intensities of all these rays should be consid-
ered in order to obtain I�β�.
C. Simulated and Experimental Results

As an example, we calculated the scattered light in-
tensity distributions for different angular regions for
two capillary tubes, denoted by tube 1 and tube 2.
The results are shown in Fig. 2. The parameters
for tube 1 were r∕R � 0.5229, n0 � 1.4710, and
n � 1.4058, and for tube 2 they were r∕R � 0.5192,
n0 � 1.4710, and n � 1.5278. For tube 1 with
n < n0, the intensities of ray numbers 1, 2, 3, and 4
were small enough to be ignored, and for tube 2 with
n > n0, ray numbers 1, 2, and 3 could be ignored.

An experiment was designed to observe the inten-
sity distribution of the scattered light in the entire
angular range. To that end, a capillary tube filled
with a liquid was placed perpendicularly in the cen-
ter of a bowl-shaped screen made of paper, as shown
in Fig. 3. A hole was made in the screen to let the
incident light pass through it and reach the capillary
tube. When an He–Ne laser beam (with wavelength
632.8 nm) polarized along the axis of the capillary
tube was normally incident upon it, the pattern of
the scattered light appeared on the screen, which
was imaged by a camera above it. The experimental
scattering patterns for tube 1 and tube 2 are
shown in Figs. 4(a) and 4(b), respectively, and the
corresponding simulation results are shown in
Figs. 4(c) and 4(d), respectively.
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The simulations are seen to be in good agreement
with the experimental results, except for the bright
spots at the bottom of the experimental patterns in
Figs. 4(a) and 4(b), which were due to unscattered la-
ser light. Another difference between simulation and
experiment is that in the simulated intensity pattern
in Fig. 4(d) there is an intensity step point at point B
at a scattering angle of about 30°, whereas there is no
such intensity step point in the experimental pattern
in Fig. 4(b). The reason for this difference is mainly
caused by the coherence of the incident laser light.
When n > n0, rays 6 and 7 have comparable intensi-
ties at point B, where they interfere to produce
fringes, which are difficult to see in Fig. 4(b), but visi-
ble by close inspection. These closely spaced interfer-
ence fringes disguise the intensity step point that
would have been visible in their absence. In the si-
mulated intensity pattern in Fig. 4(d), one can see
this intensity step point because interference is
not accounted for in the simulation. When n < n0,
there were three intensity step points in the pattern,
denoted by A, B, and C, respectively, as shown in
Fig. 4(a). When n > n0, another intensity step point
appeared near A, denoted by D, and the intensity
step points B and C were no longer present, as shown
in Fig. 4(b). Comparisons of Figs. 2 and 4 showed that
the intensity step points A, B, and D corresponded to
the minimum deviation angles of ray numbers 5, 6,
and 4, respectively, and that point C corresponded to
the maximum deviation angle of ray number 7. The

relations between the scattering angles of these in-
tensity step points and the capillary parameters
are analyzed in Section 3.

3. Relations Between Scattering Angles of Intensity
Step Points and Capillary Parameters

As mentioned above, the scattering angles of the in-
tensity step points vary with the capillary para-
meters. Therefore, measurements of the scattering
angles of the intensity step points can be used to de-
termine the capillary parameters. To that end, rela-
tions between the scattering angles of the intensity
step points and the capillary parameters must be
established.

A. Relation Between Point A and n0

The scattering angle of intensity step point A cor-
responds to the minimum deviation angle of ray

Fig. 2. (Color online) Intensity distributions of different angular parts of the scattered light for tube 1 and tube 2. (a)–(c) correspond to
ray numbers 5–7, respectively, for tube 1, and (d)–(g) correspond to ray numbers 4–7, respectively, for tube 2. The arrow represents the
direction of the incident light.

Fig. 3. (Color online) Experimental setup to observe the intensity
distribution of the scattered light. The diameter of the observing
screen is about 15 cm.

Fig. 4. (Color online) Experimental intensity patterns for (a) tube
1 and (b) tube 2. Simulated intensity patterns for (c) tube 1 and
(d) tube 2.
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number 5, denoted by α5. Plots of β5 versus θ for dif-
ferent values of n0 are shown in Fig. 5 based on
Eq. (5), and the corresponding simulated intensity
distributions of the scattered light are shown in
Fig. 6. Figures 5 and 6 show that intensity step point
A exists if and only if β5 has a local minimum.
Figure 5(b) shows a limiting case.

As we can see in Eq. (5), jdβ∕dθj is inversely pro-
portional to the intensity of scattered light at a cer-
tain angle. Thus, a small slope of the β versus θ curve
means a small divergence or angular spread, and
thus a high intensity. Since ray number 5 contains
reflected light, it has low intensity in general. Only
at the scattering angle corresponding to a local mini-
mum of the angular spread can the contribution of
ray number 5 be observed in the scattering pattern.
At other scattering angles, ray number 5 is dark, im-
plying that intensity step point A is absent. Thus, the
condition for the existence of intensity step point A is
that β5 has a local minimum.

Differentiating β5 in Eq. (5) with respect to θ, and
setting the derivative equal to zero, we obtain the an-
gle of incidence, denoted by θ5m, corresponding to the
minimum of β5:

θ5m � arcsin
�
4 − n2

0

3

�1∕2
: (13)

The condition for the existence of a minimum of β5 is
that θ5m lies in the range of angles of incidence asso-
ciated with ray number 5, i.e., [cf. Eq. (5)],

arcsin
rn0

R
< θ5m <

π

2
: (14)

Substituting from Eq. (13) into Eq. (14), we find that
the condition for the existence of point A is

1 < n0 <
�

4

1� 3r2∕R2

�
1∕2

: (15)

Substituting from Eq. (13) into Eq. (5), we obtain the
scattering angle of point A:

α5 � 2 arcsin
�
4 − n2

0

3

�1∕2
− 4 arcsin

�
4 − n2

0

3n2
0

�1∕2
� π:

(16)

From Eq. (16), we see that n0 depends only on α5,
and Fig. 7 shows the relation between α5 and n0. We
conclude that by measuring the scattering angle of
the intensity step point A, we can determine n0 by
using the plot in Fig. 7, where the range of n0 is given
in Eq. (15).

B. Relation Between Point B and r∕R
The scattering angle of intensity step point B corre-
sponds to the minimum deviation angle of ray num-
ber 6, denoted by α6. From Eq. (6), it follows that β6
increases monotonically with θ, so that α6 can be
obtained by inserting the minimum value of θ, given
by arcsin�rn0∕R�, into Eq. (6):

Fig. 5. (Color online) Plots of β5 versus θ for different values of n0, for r∕R � 0.5, and for refractive indices of the capillary material of
(a) n0 � 1.10, (b) n0 � 1.51, and (c) n0 � 1.80.

Fig. 6. (Color online) Intensity distributions of the scattered light
for different values of n0. The capillary parameters are n � 1.4,
r∕R � 0.5, and (a) n0 � 1.10, (b) n0 � 1.51, and (c) n0 � 1.80. Fig. 7. (Color online) Relation between α5 and n0 for r∕R � 0.5.
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α6 � 2 arcsin
rn0

R
− 2 arcsin

r
R
: (17)

Once n0 has been determined from Fig. 7, r∕R de-
pends only on α6, as illustrated in Fig. 8.

To determine the minimum and maximum values
or lower and upper bounds for r∕R in Fig. 8, we first
take a look at the simulated intensity distributions
for different ratios r∕R in Fig. 9, from which it follows
that there is a minimum value for r∕R. For r∕R
values smaller than the minimum value, ray number
7 will diverge and disguise intensity step point B, as
is evident from comparing the bottom portions
of Figs. 9(a) and 9(b). The condition for nondiver-
gence of ray number 7, which will be obtained
below, is

1
r∕R − r∕�Rn0� � 1∕n0

< n; (18)

fromwhich it follows that theminimum value for r∕R
is �n0 − n�∕�n0n − n�.

According to Eq. (6), the lower bound for the angle
of incidence for ray number 6 is arcsin�rn0∕R�. When
r∕R increases to 1∕n0, the lower bound for the angle
of incidence for ray number 6 approaches π∕2 and ray
number 6 disappears, as illustrated in Fig. 9(d),
where r∕R has the value 0.7, which is larger than
1∕n0 � 0.67. Thus, the upper bound for r∕R is
1∕n0, implying that we can determine r∕R from Fig. 8
in the range from �n0 − n�∕�n0n − n� to 1∕n0.

C. Relations Between n and Intensity Step Points C, D,
and E

The scattering angles of intensity step points C and
D correspond to respectively the maximum value of
β7, denoted by α7, and the minimum value of β4, de-
noted α4. By simulating the intensity distributions
for the scattered light for different values of the re-
fractive index n of the liquid, we found intensity step
point C to exist when n < n0 [Fig. 10(a)] but to dis-
appear when n > n0, in which case intensity step
point D emerged [Fig. 10(b)]. As n continued to in-
crease, point D disappeared, whereas another inten-
sity step point, denoted by E, appeared [Fig. 10(c)]. It
corresponds to the minimum deviation angle of ray
number 3, denoted by α3. Simulations indicate that
the scattering angles of intensity step points C, D,
and E vary with the refractive index n of the liquid,
which therefore may be determined from measure-
ments of these scattering angles.

First, we analyze the ranges of n that can be deter-
mined frommeasurements of the scattering angles of
intensity step points C, D, and E. Plots of β4 versus θ
for different values of n are shown in Fig. 11, and the
corresponding simulated intensity distributions for
ray number 4 are shown in Fig. 12. Intensity step
point D exists if and only if β4 has a local minimum,
as illustrated in Figs. 11(b) and 12(b). Otherwise ray

Fig. 8. (Color online) Relation between α6 and r∕R. The refractive
indices of the capillary and liquid are n0 � 1.5 and n � 1.3,
respectively.

Fig. 9. (Color online) Intensity distributions of the scattered light for different values of r∕R. The parameters are n0 � 1.5, n � 1.3, and
(a) r∕R � 0.15, (b) r∕R � 0.40, (c) r∕R � 0.5, and (d) r∕R � 0.70.

Fig. 10. (Color online) Intensity distributions of light scattered by capillary tubes filled with different liquids. The parameters are
r∕R � 0.5, n0 � 1.5, and (a) n � 1.40, (b) n � 1.55, (c) n � 1.80, and (d) n � 2.50.
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4 diverges and intensity step point D disappears, as
shown in Figs. 11(a) and 12(a) and also in Figs. 11(c)
and 12(c). Thus, the condition for existence of inten-
sity step point D is that β4 has a local minimum, im-
plying that the slope of β4 is negative for values of θ
smaller than θ4m, which corresponds to the minimum
value of β4, whereas the slope of β4 is positive for
values of θ larger than θ4m. Thus

dβ4
dθ

< 0 when θ has its minimum value; (19)

and

dβ4
dθ

> 0 when θ has its maximum value: (20)

When n < n0, the minimum and maximum angles of
incidence of ray number 4 are 0 and arcsin�rn∕R�, re-
spectively [see Eq. (4) and the first two sentences
after Eq. (7)]. Substituting this maximum value of
θ into the derivative of Eq. (4) with respect to θ,
we obtain

dβ4
dθ

� −∞ for θ � arcsin
�
rn
R

�
: (21)

Since Eq. (21) is in contradiction with relation (20),
point D cannot exist when n < n0. When n > n0, the
minimum and maximum incident angles of ray 4 are
0 and arcsin�rn0∕R�. Substituting these minimum
and maximum values of θ into the derivative of
Eq. (4) with respect to θ, we obtain from relations
(19) and (20)

dβ4
dθ

� 2
�
1 −

2
n0

� 2R
rn0

−
2R
rn

�
< 0 for θ � 0; (22)

dβ4
dθ

� �∞ ≥ 0 for θ � arcsin
�
rn0

R

�
: (23)

Since relation (23) is always satisfied, the range of n
that can be determined from measurements of the
scattering angle of point D follows from relation (22):

n0 < n <
1

r∕�2R� − r∕�Rn0� � 1∕n0
: (24)

The ranges of n that can be determined from mea-
surements of the scattering angles of intensity step
points C and E can be obtained by using the same
procedure:

1
r∕R − r∕�Rn0� � 1∕n0

< n < n0 �point C� (25)

and

n0 < n <
2

r∕R − r∕�Rn0� � 1∕n0
�point E�: (26)

Analytic expressions of α3, α4, and α7 are hard to
obtain. However, the relations between each of these
quantities and n can be obtained numerically from
Eqs. (3), (4), and (7), respectively, as shown in Fig. 13
for four different values of n (n � n1, n � n2, n � n3,
and n � n4), given by n1 � 1∕�r∕R − r∕�Rn0� � 1∕n0�,
n2 � n0, n3 � 1∕�r∕�2R� − r∕�Rn0� � 1∕n0�, and
n4 � 2∕�r∕R − r∕�Rn0� � 1∕n0�, for n0 � 1.471 and
r∕R � 0.5. When n2 < n < n3, one cannot determine
n from measurements of the scattering angle of
intensity step point E, because then point E is dis-
guised by background light and thus invisible, as
shown in Fig. 10(b). In conclusion, n can be deter-
mined from measurements of the scattering angles
of intensity step point C when n1 < n < n2, intensity
step point D when n2 < n < n3, and intensity step
point E when n3 < n < n4. For example, with n0 �
1.5 and r∕R � 0.5, one can determine the refractive

Fig. 11. (Color online) Plots of β4 versus θ for different values of n. The parameters are r∕R � 0.5, n0 � 1.5, and (a) n � 1.4, (b) n � 1.6,
and (c) n � 1.8.

Fig. 12. (Color online) Intensity distributions of scattered light
for ray number 4. The parameters are r∕R � 0.5, n0 � 1.5, and
(a) n � 1.4, (b) n � 1.6, and (c) n � 1.8.
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indices of liquids in the range from n � 1.2 to
n � 2.4, which covers most liquids.

D. Summary of the Method

For a brief overview of the method, the results of the
previous analyses are listed in Table 1, where a com-
plete method is presented for determining the capil-
lary parameters from measurements of the
scattering angles of the intensity step points.

4. Experimental Results

To test our method, an experiment was designed to
determine the capillary parameters from mea-
surements of the scattering angles of the intensity
step points. Figure 14 shows the experimental appa-
ratus, which was made by modifying a spectrometer.

A capillary tube is placed on the objective stage par-
allel to the main axis of the spectrometer. An obser-
ving screen with a scale is fixed on the spectrometer
arm, which can move circularly around the main axis
of the spectrometer. By rotating the screen, one can
observe the intensity distribution of the scattered
light at any angle, and thus measure the scattering
angles of the intensity step points with an accuracy of
10. The measured angles of the intensity step points
for tube 1 and tube 2 are shown in Table 2.

By using the measured angles in Table 2, one can
obtain the capillary parameters, as shown in Table 3,
where the differences are seen to be smaller than
0.5% between our results and those obtained with
an Abbe refractometer, which is an instrument based
on the principle of total internal reflection. When
light from different directions is incident on a sample
in an Abbe refractometer, the incident light will be
totally reflected at angles of incidence equal to or lar-
ger than the critical angle. Thus, by measuring the
critical angle of deviation at which total reflection

Fig. 13. Relations between n and the scattering angles of points C
(triangle), D (circle), and E (square). The refractive index and the
radius ratio of the capillary tube are n0 � 1.5 and r∕R � 0.5,
respectively.

Table 1. Brief List of the Method

Parameter Step Point Range Premised Relation

n0 A 1 ∼ �4∕�1� 3r2∕R2��1∕2 None Fig. 7
r∕R B �n0 − n�∕�n0n − n� ∼ 1∕n0 n0 Fig. 8
n C n1 ∼ n2 n0, r∕R Fig. 13 (triangle)
n D n2 ∼ n3 n0, r∕R Fig. 13 (circle)
n E n3 ∼ n4 n0, r∕R Fig. 13 (square)

Fig. 14. (Color online) Experimental setup to measure the
scattering angles of intensity step points.

Table 2. Measured Scattering Angles of Intensity Step Points for Capillaries with Different Liquids Insidea

Liquid Point A Point B Point C Point D

Simethicone 154°550 37°410 19°90

Phenethyl alcohol 154°440 167°30

aThe capillary with phenethyl alcohol inside is of radius ratio 0.5192.

Table 3. Results Obtained by Using Our Method and Other Precise Methodsa

Liquid n0 n0
0 Error n n0 Error r∕R r0∕R0 Error

Simethicone 1.4762 1.4710 0.35% 1.4063 1.4058 0.04% 0.5203 0.5229 0.50%
Phenethyl alcohol 1.4740 1.4710 0.2% 1.5260 1.5278 0.12%
an0, r∕R, and n are measured by using our method. n0

0 and n0 are obtained from an abbe refractometer, and r0∕R0 is obtained from a
JCD3 50 mm reading microscope.
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starts, the refractive index of the sample can be
determined from Snell’s law [22].

The main errors in the experiment are due to the
wave nature of light and the asymmetry of the capil-
lary. The wave nature of light is responsible for dis-
tributing each intensity step point in the experiment
in a small angular range instead of a single point,
which results in an uncertainty in the measurement
of the scattering angle of each intensity step point. A
capillary tube with a larger size would reduce the in-
fluence from the wave nature of light, and make the
results more precise. The asymmetry of the capillary
tube is unavoidable when the objective is to measure
its parameters. But if one just wants to measure the
refractive index of a liquid, then one could choose a
more symmetrical capillary by rotating it around
its axis to check whether the rotation results in
movements of the intensity step points. The less
the step-point movements, the more symmetrical the
capillary.

5. Conclusion

The intensity distributions of light scattered by a ca-
pillary tube filled with a liquid were simulated and
obtained experimentally, and the simulations were
found to be in good agreement with the experimental
results. A new, accurate method was developed to
determine the capillary parameters, including the
refractive index of the liquid, by using measured
values of the scattering angles of various intensity
step points. Since the method is based on geometrical
ray theory, without consideration of interference
effects, it has a straightforward physical interpreta-
tion. Only the scattering angles of certain intensity
step points are analyzed theoretically and obtained
experimentally, making the method simple. This
method can be used to measure the refractive index
of a poisonous or flammable liquid because the liquid
is encapsulated in the capillary tube, which is not
possible when using traditional methods. We can
also use this method to measure other parameters
of the liquid if they are related to its refractive index.
As the container of the liquid is a long and thin tube,
the liquid inside it can be easily renewed by feeding a
new liquid from one side of the tube and removing
the old liquid from the other side, implying that this
method can dynamically measure the liquid’s refrac-
tive index and related parameters.

This work was supported by the National Basic Re-
search Program of China (Grant No. 2010CB923200).
The authors would like to thank Doctor Hujiang
Yang for beneficial suggestions.
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