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A multiple beam interference model based on the ray tracing method and interference theory is built to analyze
the interference patterns of a capillary tube filled with a liquid. The relations between the angular widths of the
interference fringes and the parameters of both the capillary and liquid are derived. Based on these relations, an
approach is proposed to simultaneously determine four parameters of the capillary, i.e., the inner and outer radii
of the capillary, the refractive indices of the liquid, and the wall material. © 2015 Optical Society of America
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1. INTRODUCTION

Refractive index (RI) of liquid is a key parameter in physics,
chemistry, and biology. Thus, its precise measurement is of
great significance. In the last few years, several methods have
been proposed to measure the RI of liquid by using a capillary.
A typical example is the capillary interferometry [1–12], where
the RI of the liquid can be obtained by measuring the inter-
ference fringes. However, the capillary interferometry is still
a little complicated, in both experiment and theoretical analy-
sis. Treating the capillary as an interferometer as well, Hou et al.
[13] propose a simpler method based on dual-beam interfer-
ence. They blacked the inner wall of the tube with ink, and
analyzed the interference fringes produced by two lights that
differ in their paths, one passes through the capillary wall, and
the other is reflected by the surface of the capillary. They de-
rived the spacing of fringes at a certain location on the screen as
a function of the capillary parameters, which was then used to
determine the outer radius of the capillary if the RI of the capil-
lary is known, and vice versa. On the other hand, You et al.
[14,15] focused on the global structure of emergent light from
the capillary based on geometrical optics. It was found that by a
simple measurement of the deviation angles of several intensity
step points, the RIs of both the liquid and the capillary wall, as
well as the ratio of the capillary radius can be obtained. A dif-
ficulty of the You et al. method is the localization of the step
points, because these step points are not strictly points as sug-
gested by the geometrical optics. Instead, these spots have cer-
tain span widths because of the wave nature of light, which

brings error to the measurement, and this disadvantage become
obvious when we use a thin capillary.

In this paper, a method is proposed that can accurately and
simultaneously measure four parameters, i.e., RIs of the liquid
and the capillary wall, inner and outer radii of the capillary,
based on a multiple beam interference model. We employ
ray tracing method [16,17] and interference theory to analyze
the interference patterns of a capillary filled with transparent
liquid. The emergent lights are classified into rays 1–7 in accor-
dance with their paths. By tracing the paths of these rays, one
obtains the intensities of these rays. Different rays incident on
the same spot of the screen will interfere. The interference
patterns can be calculated according to the phase differences
of these rays. We find that in most cases, usually only two or
three of these rays are dominant contributors to the interference
pattern at a specific deviation angle while other rays can be
ignored. Different combinations of dominant rays give rise
to different patterns. To be specific, a dual-beam interference
results in periodic stripes, while the interference of three rays
produces envelope fringes. The angular widths of the fringes are
also obtained, which are well related to the parameters of the
capillary and the liquid. Based on this relation, a simple method
is developed to simultaneously measure RIs of the liquid and
the capillary wall, inner and outer radii of the capillary. To
determine the error of this method, we build an experiment
to measure these parameters. First, we generate interference
patterns for a certain set of parameters. Then we measure the
angular widths of these simulated fringes and determine the
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parameters by using the proposed method. The error of the
method is proved to be less than 0.03% in theory. We also
conducted a practical experiment, from which the errors of
the parameter were found to be of 0.1% order, and the error
source is analyzed.

The rest of the paper is organized as follows. In Section 2,
the experimental phenomena are introduced. In Section 3, the
ray tracing method and interference theory are used to analyze
the intensity distribution and interference patterns, respec-
tively. The method to measure parameters is proposed in
Section 4. Finally, in Section 5, we draw our conclusions.

2. EXPERIMENTAL INTERFERENCE PATTERNS

The experimental setup is shown in Fig. 1. A capillary filled
with transparent liquid is placed vertically, 2 m away from a
He–Ne laser (wavelength of 632.8 nm). A rotating screen is
placed with a radius about 1 meter. The RI of the capillary wall
is n0 � 1.4710 [14], and the liquid inside the capillary is phe-
nylethyl alcohol, with a RI n � 1.5323. The RI of the liquid
is obtained from an Abbe refractometer. The inner and outer
radii of the capillary are, respectively, r � 0.256 mm and
R � 0.505 mm, measured by a reading microscope (JCD3).
Since the diameter of the incident beam (9 mm) is much larger
than that of the capillary (1.010 mm), the laser beam can be
regarded as a plane wave.

The typical interference fringes are presented in Fig. 2. The
interference patterns can be divided into three classes. The
first class is simple periodic fringes [like A and C in Figs. 2(b)]

similar to those of the double-slit interference. Those contain
fine structure in the pattern (envelopes), like B in Fig. 2(b) are
classified into the second class; while the third class are com-
plicated irregular stripes like D and E in Fig. 2(b). In the fol-
lowing sections, we focus on patterns of class 1 and 2.

3. THEORETICAL ANALYSIS

Two classes of regular patterns have been shown in Fig. 2. To
analyze these patterns, we need to combine the theories of
geometrical optics and wave optics. For a capillary filled with
transparent liquid, the process of interference is subtle and
complicated. Thus, we employ a multibeam interference model
to analyze these patterns.

A. Intensity Distribution of Different Rays
It can be derived from Fresnel’s Law that the reflectivity of both
interfaces, i.e., the air-capillary interface and the capillary-liquid
interface, are very low. Hence, it suffices to consider only the
lights that are reflected no more than one time. The emergent
lights can be classified into rays 1–7 according to their paths, as
shown in Fig. 3. Because of symmetry, only the upper half of
incident lights are taken into account. The angle of incidence,
denoted by θ, is defined as the angle between the incident light
and the normal to the surface of the capillary. Meanwhile,
the deviation angle β is defined as the angle from the incident
light to the emergent light with positive sign in the clock-
wise sense.

The deviation for the angles of seven rays can be obtained by
employing the three laws of the geometrical optics, which are

β1 � 2θ − π

�
0 ≤ θ ≤

π

2

�
; (1a)

β2 � 2�θ − φ� δ� − π
�
0 ≤ θ ≤ arcsin

rn0
R

�
; (1b)

β3 � 2�θ − φ� δ − 2α� � π

�
0 ≤ θ ≤ arcsin

rn0
R

�
; (1c)

β4 � 2�θ − 2φ� 2δ − 2α� � π

�
0 ≤ θ ≤ arcsin

rn0
R

�
; (1d)

β5 � 2�θ − 2φ� � π

�
arcsin

rn0
R

≤ θ ≤
π

2

�
; (1e)

Fig. 1. Experimental setup to observe interference patterns around
the capillary.

Fig. 2. Interference patterns in the experiment. Parameters are n0 � 1.4710, R � 0.505 mm, r � 0.256 mm, n � 1.5323. A–E in (b) show the
detailed patterns at different angles, with an angular width of about 2°, and the center angles are about 10, 40, 90, 160, and 170°, respectively. A–E in
(b) are located, respectively, in A–E in (a).
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β6 � 2�θ − φ�
�
arcsin

rn0
R

≤ θ ≤
π

2

�
; (1f)

β7 � 2�θ − φ� δ − α�
�
0 ≤ θ ≤ arcsin

rn0
R

�
: (1g)

Note that when the incident angle θ is arcsin (rn0∕R), the re-
fractive ray is tangent to the inner wall of the capillary. Note
that RI of the liquid is greater than that of capillary wall
(n > n0) in this paper.

The intensity distributions of the seven rays can be deter-
mined by taking into account the reflectance and transmittance
at each interface that the rays pass through. Let the intensity of
incident lights be I0, and the intensity of emergent ray i be
I i(βi), we have

I i�βi� � I0Si�θ; βi�; (2)

where Si�θ; βi� is called the scattering factor of ray i, which is
the product of transmittance and reflectance at either inner or
outer capillary wall. For example, ray 5 is successively refracted,
reflected, and then refracted again. If the angles of incidence at
each interface are θ and φ, then S5�θ; β5� is given by

S5�θ; β5� � T �θ�Re�φ�T �φ�; (3)

where reflectance (Re) and transmittance (T ) are [18]

Re�γ� �
�
sin�γ − γ1�
sin�γ � γ1�

�
2

; (4)

T �γ� � 1 − Re�γ�: (5)

In Eq. (4), γ and γ1 are the angles of incidence and refrac-
tion, respectively. The scattering factors for other rays can be
calculated in the same way. Hence, we can obtain the intensity
distributions of emergent lights for all rays, as shown in Fig. 4.
Note that Fig. 4 only shows the intensity distribution of emer-
gent light in the range of 0°–180°.

Obviously, different rays are reflected and refracted at differ-
ent places on the screen, and the deviation angle can be further
divided into five regions (A–E). Irregular fringes of class 3 ap-
pears in regions D, E, thus we focus on regions A–C in the rest

of the paper. Meanwhile, according to Fig. 4, intensities of rays
on the boundary between adjacent regions are unstable, causing
irregular patterns, and the block part of regions A, B, and C are
analyzed. From Fig. 4, it is easy to conclude that the relative
intensity of the seven rays differ so much that only two or three
rays (high intensity) contribute to the interference pattern at a
certain angular region, while other rays (low intensity) can be
ignored, as listed in Table 1. Note that intensity of ray 2 is small
at all angles, so it is not listed in the table.

The intensity distributions of different rays are obtained by
using the ray tracing method. Since a coherent beam of light is
incident on the capillary, the emergent lights of different rays
that arrive at the same spot of the screen can interfere with each
other and produce the various patterns shown in Fig. 2(b).

B. Analysis of Interference Patterns
Since the intensities of the seven rays are known, their phase
must be determined to obtain the interference patterns in each
region.

It can be learned from Table 1 that rays 1, 7, and rays 1, 5,
and rays 1, 6, and 7 contribute to the interference fringes in
regions A, C, and B, respectively. The intensities of the inter-
ference patterns in A, C, and B are [19]

IA � A2
1 � A2

7 � 2A1A7 cos

�
2π�L7 − L1�

λ

�
; (6)

IC � A2
1 � A2

5 � 2A1A5 cos

�
2π�L5 − L1�

λ

�
; (7)

Fig. 3. Paths of rays 1–7. Rays 1 and 2 are reflected on the outer
and inner convex interfaces, respectively. Ray 3 is reflected by the inner
concave wall. Rays 4 and 5 are reflected by the outer-convex wall,
while ray 4 passes through the liquid, and ray 5 does not. Rays 6
and 7 are refractive lights which pass through the capillary wall and
the liquid, respectively.

Fig. 4. Intensity distributions for seven rays in five angular regions
A–E.

Table 1. Three Different Angular Regions with Different
Combination of Raysa

Ray
1

Ray
3

Ray
4

Ray
5

Ray
6

Ray
7

A (0°–36°) ✓ ✓
B (36°–67°) ✓ ✓ ✓
C (154°–168°) ✓ (Ignored) ✓

aRays with much smaller intensity are ignored compared with others in the
same region.
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IB � A2
1 � A2

6 � A2
7 � 2A1A6 cos

�
2π�L6 − L1�

λ

�

�2A1A7 cos

�
2π�L7 − L1�

λ

�

�2A6A7 cos

�
2π�L6 − L7�

λ

�
: (8)

Here, λ is the wavelength of the laser, Ai�β� � �I i�β��1∕2 is the
amplitude of the electromagnetic field of ray i. To calculate the
phase of these rays, two lines are set as the starting and ending
of phase calculation, as shown in Fig. 5. The optical path length
of rays 1, 5, 6, and 7 from line 1 to line 2 are

L1 � 2R�1 − cos θ�; (9)

L5 � 2R�1 − cos θ� � 4n0R cos φ; (10)

L6 � 2R�1 − cos θ� � 2n0R cos φ; (11)

L7 � 2R�1 − cos θ� � 2n0R cos φ − 2n0r cos δ� 2nr cos α:
(12)

We calculate the interference fringes in regions A, B, and C
according to Eq. (6) to Eq. (12), and the results are shown
in Figs. 6(b), 6(d), and 6(f ), together with the experimental
phenomena [Figs. 6(a), 6(c), and 6(e)]. The simulations are
seen to be in good agreement with the experimental results.

A brief analysis of these patterns is given as follows. We
define δ51 � 2π�L5 − L1�∕λ, δ61 � 2π�L6 − L1�∕λ, δ71 �
2π�L7 − L1�∕λ, and δ67 � 2π�L6 − L7�∕λ as the phase
differences between the rays. Note that the angular widths of
the interference patterns in Fig. 6 are of the order of 1°; in this
small interval, it is reasonable to make two assumptions: (1) Ai
(i � 1, 5, 6, 7) are constant (Fig. 4); and (2) phase differences
grow linearly with β (Fig. 7). Then let δ51 � k1β� c1, δ61 �
k2β� c2, δ71 � k3β� c3, and δ67 � �k2 − k3�β� c4. Here,
ci�i � 1 ∼ 4� only influence the position of the patterns, thus
we set ci � 0 for simplicity.

Inserting δ71 into Eq. (6), we have

IA � A2
1 � A2

7 � 2A2
1A

2
7 cos δ71

� A2
1 � A2

7 � 2A2
1A

2
7 cos�k3β�: (13)

Similarly, intensity distribution in region C is

IC � A2
1 � A2

5 � 2A2
1A

2
5 cos δ51

� A2
1 � A2

5 � 2A2
1A

2
5 cos�k1β�: (14)

Since Ai�i � 1; 5; 7� is constant, the intensity distributions in
regions A and C are cosine functions of β. Therefore, the pat-
terns in regions A and C are simple periodic stripes. Meanwhile,

it can be learned from Figs. 7(a) and 7(c) that k1 > k3, thus the
stripes in region C are wider than those in region A.

The interference in region B is more complicated since there
are three rays in it. Inserting δ61, δ71, and δ67 into Eq. (8), one
obtains
IB � A2

1 � A2
6 � A2

7 � 2A1A6 cos δ61

� 2A1A7 cos δ71 � 2A6A7 cos δ67

� A2
1 � A2

6 � A2
7 � 2A1A6 cos�k2β�

� 2A1A7 cos�k3β� � 2A6A7 cos��k2 − k3�β�
� A2

1 � A2
6 � A2

7 � 2A1�A6 − A7� cos�k2β�

� 4A1A7 cos

��k2 � k3�β
2

�
cos

��k2 − k3�β
2

�

� 2A6A7 cos��k2 − k3�β�
� y0 � y1 � y2; (15)

where y0 � A2
1 � A2

6 � A2
7 � 2A1�A6 − A7� cos�k2β� and

y1 � 4A1A7 cos��k2 � k3�β∕2� cos��k2 − k3�β∕2� and y2 �
2A6A7 cos��k2 − k3�β�. Note that A6 − A7 ≪ A6�A7�,
2A1�A6 − A7� cos�k2β� can be ignored, then y0 can be regarded
as a constant. y1, y2 are shown in Fig. 8(a). Since k2 ≈ k3
(Fig. 7(b)), �k2 − k3�∕2 ≪ �k2 � k3�∕2 is valid, thus y1 de-
scribes an envelope pattern with two periods, 4π∕�k2 � k3�
and 4π∕�k2 − k3� as shown in Fig. 8(b). Obviously, y1 cannot
solely produce the beautiful pattern in the experiment [Fig. 6(e)].
From both Eq. (15) and Fig. 8, we see that the maximum and
minimum of y2 [Fig. 8(c)] correspond to that of the envelope
of y1, respectively. Thus, y2 relatively darkens the obscure part
of y1 and brightens the distinct part of the envelope. Therefore,
it is the combination of y1 and y2 that produces the elegant
“enhanced envelopes” pattern. As a result, the contour of en-
hanced envelopes is only determined by rays 1 and 7, because
its period is 4 π∕�k2 − k3�δ67∕β, while the small stripes in the
enhanced envelopes are influenced by rays 1, 6, and 7.

4. MEASUREMENT OF PARAMETERS

As mentioned above, the contour of the envelope in region B
and the fringes in region C are influenced by rays 6, 7, and raysFig. 5. Multibeam interference of regions: (a) A; (b) C; (c) B.

Fig. 6. Experimental patterns and simulations. Parameters are n0 �
1.4710, R � 0.505 mm, r � 0.256 mm, n � 1.5323. The center
angles in (a), (c), and (e) are about 5°, 160°, and 40°, corresponding
to angular regions A, C, and B, respectively. The angular widths of the
photo in (a), (c), and (e) are about 2°, 1.6°, and 1.3°, respectively.
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1, 5, respectively. Therefore, measurement of the angular
width of the fringes can be used to obtain the parameters of
the capillary and the liquid. To that end, the relation between
the angular width and the parameters must be established.
Angular widths of interference fringes in region C are related
to n0 and R, because rays 1 and 5 do not pass through the liquid
inside the tube. Conversely, rays 6 and 7 go through the liquid,
so the angular widths of envelopes in region B are not only well
related to n0 and R but also to n and r.

Before further derivation, a useful result is introduced first.
Take ray 7 as an example. Based on Eqs. (1g) and (12), basic
geometry, and the laws of refraction and reflection, we can derive

∂L
∂β

� 2

�
R sin θ

∂θ
∂β

− n0R sin
∂φ
∂β

� n0r sin δ
∂δ
∂β

− nr sin α
∂α
∂β

�

� 2R sin θ
∂�θ −φ� δ − α�

∂β
� R sin θ: (16)

It is demonstrated for all the seven rays that the first-order partial
derivatives of the optical path length L with respect to the
deviation angle β have the same expression, i.e., R sin θ.

This conclusion is determined by Fermat’s principle [20,21]
and the structure of the capillary, and it greatly simplifies the
calculation of the parameters.

To determine the outer radius of the capillary and the RI of
the wall material, we consider the interference fringes in the
angular region C, which is drawn into a schematic diagram
as in Fig. 9. Assuming β and β� Δβ are the deviation angles
of the two adjacent bright fringes and the corresponding angu-
lar width of these two fringes is Δβ. In this case, variation of
optical path length difference between rays 1 and 5 is exactly
one wavelength, i.e., Δ�ΔL� � λ (ΔL � L1 − L5). If ΔL and β
are extremely small, Δ�ΔL� can be approximated as follows:

Δ�ΔL� � d �ΔL�
dβ

Δβ �
�
dL1
dβ

−
dL5
dβ

�
Δβ � λ: (17)

Inserting Eq. (16) into Eq. (17), we have

Δβ � λ

R�sin θ1 − sin θ5�
: (18)

According to Eq. (1e), we obtain

β5 � 2θ5 − 4 arcsin
sin θ5
n0

� π; arcsin
rn0
R

≤ θ5 ≤
π

2
:

(19)

If rays 1, 5 interfere at the same spot of the screen, deviation
angles of rays 1, 5 are the same, i.e., β1 � β5 � β. Measuring
one group of Δβ and β of the fringes on the screen, and sub-
stituting β into Eq. (1a), we obtain θ�θ1�. In Eqs. (18) and
(19), θ5, R, and n0 are unknown, but the curve of the relation
between n0 and R can be obtained. Measuring several angular

Fig. 7. Relationship between δ15, δ16, δ17, δ67, and β in regions: (a) A; (b) B; (c) C.

Fig. 8. Relationship between yi�i � 1; 2� and β in a range of 1 �°�.
(b), (c), and (d) are simulated results corresponding to y1, y2, and y1 � y2,
respectively. The parameters are n0 � 1.4710, R � 0.505 mm, r �
0.256 mm, and n � 1.5323.

Fig. 9. Relationship between angular width and optical path
differences.
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widths at different deviation angles of fringes, we obtain several
similar curves, and the values of their intersection are n0 and R.

For the parameters of n and r, the same operations are per-
formed by measuring the interference fringes in region B.
Applying Snell’s law to simplify Eqs. (1f ) and (1g), we have

β6 � 2

�
θ6 − arcsin

sin θ6
n0

��
arcsin

rn0
R

≤ θ6 ≤
π

2

�
; (20)

β7 � 2

�
θ7 − arcsin

sin θ7
n0

� arcsin
R sin θ7
rn0

− arcsin
R sin θ7

rn

�
�
0 ≤ θ7 ≤ arcsin

rn0
R

�
: (21)

Similar to Eq. (18), we obtain

Δβ � λ

R�sin θ6 − sin θ7�
: (22)

Measuring the deviation angles and angular widths of interfer-
ence fringes in angular region B, several curves that show the
relations between n and r are obtained, the values of their

intersection are the required parameters. However, Eq. (17)
has a mathematical approximation, the error caused by it must
be analyzed. As an example, we consider the interference fringes
in region C. Based on Eqs. (1a), (1e), and (18), the relationship
between Δβ and β can be calculated. Meanwhile, we measure
Δβ and β in simulated patterns. Results are shown in Fig. 10.
Because the simulated results based on the ray tracing method
are obtained without any approximation, we draw a conclusion
from Fig. 10 that error caused by Eq. (17) is very small.

Therefore, we obtain four parameters of capillary and liquid
by the following two steps: first, the RI of the wall n0 and the
outer radius R are determined by measuring the interference
fringes in region C; second, RI of liquid n and the inner radius
r are obtained by measuring interference fringes in region B. It
is worth noting that only with Eq. (18) and Eq. (22) derived
from Eq. (16), the derivation of the parameters can be simpli-
fied. There are three unknowns (n0, θ1, and θ5) in Eqs. (1a)
and (19), thus n0 cannot be obtained, but by adding Eq. (18),
one obtains the relation between n0 and R. Similarly, n and r
can be determined by adding Eq. (22). Therefore, Eq. (16) can
greatly simplify the calculation of the parameters.

Further, to calculate the error of the method, a virtual ex-
periment is built to measure four parameters. We measure an-
gular widths of the simulated fringes (as listed in Table 2), and
calculate the parameters by using the proposed method, the
results are displayed in Table 3. Comparing the numerical re-
sults with the default value set in the simulation, it shows that
the maximum error of the method is of 0.0001 order. Further,
in the practical experiment, patterns are measured as listed in
Table 4, and the results in Table 5 show the errors are of 0.001
order. It is primarily because of the inaccurate measurement of
the fringe spacing. The accuracy of the charge-coupled device
(CCD) light distribution instrument used in the practical ex-
periment is 0.0005°, and the error caused by it is also of 0.001
order. If a more accurate instrument can be used to measure the
fringe spacing, higher accuracy can be achieved.

Fig. 10. Relationship between Δβ and β. The parameters are
n0 � 1.4710, R � 0.505 mm, r � 0.256 mm, and n � 1.5323.

Table 2. Deviation Angles and the Angular Widths of Interference Fringes in Regions C and B in Virtual Measurementa

C B

β�°� 159.96 159.05 158.00 157.02 155.99 155.07 40.01 39.02 38.00 37.04 35.99 34.99
Δβ�°� 0.0649 0.0650 0.0652 0.0655 0.0662 0.0673 0.6096 0.6256 0.6420 0.6577 0.6750 0.6917

a The parameters are n0 � 1.4710, R � 0.505 mm, r � 0.256 mm, and n � 1.5323.

Table 3. Results Obtained by Using Our Method and Default Values

R (mm) n0 r (mm) n

numerical results 0.504889 1.47075 0.256047 1.53213
default values 0.505000 1.47100 0.256000 1.53230
inherent error (%) 0.022 0.017 0.018 0.011

Table 4. Deviation Angles and the Angular Widths of Interference Fringes in Regions C and B in Practical Measurement

C B

β�°� 159.30 158.41 158.8685 158.64 157.10 156.26 52.53 50.81 50.42 49.94 48.84 45.28
Δβ�°� 0.0651 0.0652 0.0651 0.0651 0.0657 0.0662 0.4394 0.4373 0.4579 0.4762 0.4826 0.5272
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5. CONCLUSION

We have analyzed the patterns of a capillary filled with a liquid.
Based on these analyses, a method is developed to measure the
parameters of capillary and the liquid in it, and the error of this
method is estimated to be of 0.0001 order. An experiment is
built to measure the parameters with the method; the error is of
0.001 order; this is primarily because of inaccurate measure-
ment of fringe spacing by a CCD light distribution instrument.
Since our method is based on wave optics, it applies to a capil-
lary as thin as a human hair. This method can also be used
to measure the parameters of other transparent double-layer
cylinders, such as optical fibers, biological tubes, and more.
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